According to Hunker, most automatic faucet sensors have a small infrared light, which sits next to an infrared detector. The sensor works to signal the faucet valve to turn on when your hands come within a few inches of the lip of the spout, bouncing the infrared light off of your skin and to the detector.
How does an infrared sensor faucet work
While this is a common method, other automatic faucet models will use an ultrasonic field sensor. An ultrasonic field sensor turns on the faucet valve when your hands make movement in the field, disrupting the sensor.
Every touchless or automatic faucet needs a power source in order to work, though the power sources can vary. While some models get their power from dry-cell batteries, other faucets will use a low-voltage current from an AC transformer, Hunker says.
The spout of an automatic faucet holds all the working parts. You can find spouts of different materials. Less expensive models are often made of zinc, while higher end faucets are available in brass or copper. For durability and appearance purposes, you will likely find nickel or chrome-plated spouts.
In addition to completely touchless faucets, you also have the option of a simple touch on faucet. Touch faucets have sensors in the spout and handle of the faucet that allow you to tap the faucet to activate water flow.
Commercial touchless faucets and toilets are found in many lavatories today. From improving hygiene practices to adding tons of convenience, these products are extremely valuable. While you constantly use this innovative equipment on a daily basis, have you ever wondered how they work?
As infrared sensor faucets are the most common in commercial plumbing applications, some sinks utilize an ultrasonic field sensor. This technology involves the faucet valve turning on when something enters a small area around the sensor.
Commercial plumbing sensors work to detect capacitance in the air. When you wave your hand or place an object in front of the sensor, the device can detect the presence of capacitance, or the rise of it compared to the surrounding air. This will open up the valve and create the flow of water. As you move your hand away from the sensor, this will drop the present capacitance value, resulting in the water turning off.
The accuracy of PSD sensor detection is 10 times higher than infrared detection. PSD senses the precise distance of an object in relation to the infrared eye and reduces false actuation due to variations in clothing, skin colour, light and reflections.
Today, the majority of HANSA touchless faucets are equipped with both PSD and Bluetooth technology, which allows you to adjust and keep track of the faucet through an app. Whether your customers are private homeowners or running larger commercial projects, you can help them understand the difference between standard infrared and PSD and how to choose reliable touchless faucets that can keep their bathrooms running smoothly.
Automatic faucets are created by combining four key components: Solenoid valve, sensor and control electronics, power source, and faucet. Although there are variations to this theme, these are key tools each with a distinct function that, once combined, constitute an automatic faucet. Here's an overview break down of these components:
A) Solenoids are electrical components that transform electrical energy into mechanical energy "motion". When energized a solenoid creates a magnetic field which exerts a linear force on an object called plunge or actuator. That's why solenoids are called "linear motors". Automatic faucets powered by batteries employ a type of solenoid called "magnet latching or bi-stable solenoid". These solenoids operate at low voltage, usually 6 volt DC, with some solenoids operating at 9 volt DC. The reason these solenoids are called "magnet latching" is that as the solenoid is initially energized to start the water flow, the plunger is driven into the range of a permanent magnet which in turn holds the plunger in the "open" position. This initial energizing of the solenoid is called "pulsing or inrushing" and takes place within a fraction of a second. In order to return the plunger into its original "closed" position the solenoid is once again "pulsed" but this time by reversing polarity (remember, we're working with DC voltage here). The reason behind this complex operation: Conserving battery power.
While on the subject of diaphragm valves, it is inappropriate to move on to the next subject without discussing briefly "particle filters" and the type of relationship they have with diaphragm valves. There are 2 realities in plumbing systems that we all have to live with. 1. Water flowing in plumbing supply lines contain loose particles. 2. Diaphragm valves are defenseless against them. If allowed to enter a given diaphragm valve (regardless of whether the valve is involved in a faucet application or any of the numerous applications outlined above), particles present in water supply lines will damage the valve. Did you notice that I didn't say "if"? This damage often takes place immediately after installation or within a few days afterwards. Regardless of the time laps, allowing loose particles to enter diaphragm valves will cause valve damage, I cannot stress that enough. The damage mostly manifests itself in a leaky faucet or one that simply does not shut off, even though the solenoid did its job by driving the plunger into a closed position. This last condition called "runaway faucet" is a specially menacing condition that could possible cause severe flood damage to the area surrounding the faucet. Particle filters are an integral component of an automatic faucet. All automatic faucets are shipped with particle filters, these filters must not be removed and discarded.
If the diaphragm is misunderstood and maligned, the electronic sensor component of automatic faucets by comparison is mired by hate and loathing of many in the plumbing industry. There seems to be an aura of mystery surrounding these sensors somewhat reminiscent of that exhibited towards personal computers and cellular phones when they first came into use. Well I'd like to do my part in dispelling this mystery first by taking it away on a long, hopefully entertaining, explanation, and then by bringing it all home to you. Feel free to email me and let me know if I did a good job, no hate letters please.
Automatic faucets are presence sensors and not motion sensors. They employ Active Infrared technology which senses "presence" and not "movement" of objects. Active infrared technology, like the name implies is actively emitting infrared light and actively waiting for this light to come back to it. On the frequency spectrum, infrared light lies between radio waves and light waves that are visible to the human eye. To achieve the task of emitting and receiving, faucet sensors employ 2 key components: an emitter AKA transmitter and a collector AKA receiver each about 1/4" in diameter and 5/16"long or smaller. These components are housed within the sensor capsule that is located either at the neck of the faucet spout, in a separate sink hole to the side of the faucet spout, or in a special compartment up next to the aerator. The emitter is constantly emitting infrared light in a blinking method, that is, the emitter is constantly blinking in the same way that turn signals on automobiles blink when the turn signal lever is engaged. The collector on the other hand, is always ready to receive (collect) this blinking light, and when it does, the control electronics take a factory preset action, in the case of battery powered faucets, the control electronics send an electrical pulse to the solenoid valve asking it to open. When the collector no longer receive the blinking light, the control electronics will then send yet another electrical pulse to the solenoid, this time, asking the solenoid to close. Since the emitter emits infrared light in a narrow and focused beam (imagine the focusing apparatus on a common household flash light), and since the collector also receives infrared light in a straight and narrow beam, and since both emitter and collector point in the same direction never in plane view of one another, the only way that the collector can receive the blinking light that is emitted by the emitter is to place a reflective object in the path of the beam, in most cases human hands.
I promised you earlier that I will bring it all home to you. The reason that I want to do so is that some may read the earlier paragraph and immediately conclude that this automatic faucet "thing" is advanced technology, too complicated for plumbing purposes, maybe even extreme, and should never be used in any consumer level products. This assessment by some is simply unfair and, more notably, far from the truth. In fact this technology has been in the palm of your hand, literally, for well over twenty year. I am talking about TV remote control, man's new best friend, we all have them, we all love them, and some of us, can't live without them. Your TV remote control employs the same active infrared technology that your automatic faucet does, sometimes the same exact emitter and collector component. In the case of a remote control the emitter is located inside the remote control itself and at the end that points at the TV, whereas the collector is located inside the TV generally hidden behind an amber color transparent plastic guard. If you think that faucet sensor and control electronics are complex .. think again. Whereas faucet sensor and control electronics act as an On Off switch, a remote control designed for an entertainment centers, for example, sends and receives coded messages that are 100,000 to 1,000,000 times more complex than that of the simple on-off function that faucet electronics perform. Aren't some of us lucky we're in the plumbing business and not in the TV business?
Automatic faucet spouts are not dissimilar to standard faucet spouts. They're mainly constructed of brass or in some cases, zinc. It is proper to state a disclaimer here that all MAC faucets are constructed of brass, MAC faucets does not build faucets or faucet components out of zinc. Some automatic faucets are machined, for example: European style faucets, (the MAC FA400-100, 1200, 1400 series faucets), some are die cast with the water passage made of copper tubing, and yet some are made of brass that is sand cast, this later type is generally referred to as solid brass for the large brass content in it. We will discuss the various forms of castings in Part III. 2ff7e9595c
Comments